Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
You can print anything... or can you? 3D printing is an exciting new technology that promises to very quickly create anything people can design. Scientists who want to make soft robots, like Baymax from Big Hero 6TM, are excited about 3D printers. Our team uses 3D printing to make molds to produce soft robots. Molding is like using a muffin tin to make cupcakes. But can you make anything with 3D printing or are there times when 3D-printed molds do not work? Just like a cupcake liner, 3D-printed molds leave ridges, like a Ruffles potato chip, in soft robots. These ridges are a weak point where cracks can form, causing the robot to pop like a balloon. To prevent this, we sometimes need to make our robots using very smooth molds made from metal. This article talks about when and how 3D printing is useful in making soft robots.more » « less
-
This paper describes a series of endurance and material property tests conducted on a pneumatic, fabric-reinforced inflatable soft actuator made of Dragon Skin 30 silicone, which exhibited performance variations during operation. It is important to understand the level of variation over time and how it affects the motions of the soft actuators. The tests were designed to investigate the repeatability and durability of the actuator by measuring changes in its trajectories after long working periods, determining its failure pressure, and examining its elasticity through tensile tests. The experiments were performed on multiple soft actuators, and the results show pertinent information about the variation in their motion and how it relates to the material behavior of the silicone. This information enhances our understanding of the real-world behavior of silicone soft actuators and enables us to better control their performance in our applications.more » « less
-
Modern crystallographic refinement methods treat each atom in a molecule as neutral with spherical electron density. Atoms, however, exhibit partial atomic charges arising from intramolecular forces via bonding. These partial charges are crucial for understanding electronic structure and bulk physical properties of molecules. Typically the polarity and polarizability of molecules are calculated using IR and Raman spectroscopy, respectively. While these techniques can be used on small molecules, fine elucidation of partial charges on individual atoms is still unrealized. Here we present crystallographic refinement developments that allow us to refine electron density around individual atoms to experimentally calculate partial atomic charges. Comparison between these experimentally calculated charges to theoretical quantum calculated charges will also be presented.more » « less
-
Abstract A constellation of satellites is now in orbit providing information about terrestrial carbon and water storage and fluxes. These combined observations show that the tropical biosphere has changed significantly in the last 2 decades from the combined effects of climate variability and land use. Large areas of forest have been cleared in both wet and dry forests, increasing the source of carbon to the atmosphere. Concomitantly, tropical fire emissions have declined, at least until 2016, from changes in land‐use practices and rainfall, increasing the net carbon sink. Measurements of carbon stocks and fluxes from disturbance and recovery and of vegetation photosynthesis show significant regional variability of net biosphere exchange and gross primary productivity across the tropics and are tied to seasonal and interannual changes in water fluxes and storage. Comparison of satellite based estimates of evapotranspiration, photosynthesis, and the deuterium content of water vapor with patterns of total water storage and rainfall demonstrate the presence of vegetation‐atmosphere interactions and feedback mechanisms across tropical forests. However, these observations of stocks, fluxes and inferred interactions between them do not point unambiguously to either positive or negative feedbacks in carbon and water exchanges. These ambiguities highlight the need for assimilation of these new measurements with Earth System models for a consistent assessment of process interactions, along with focused field campaigns that integrate ground, aircraft and satellite measurements, to quantify the controlling carbon and water processes and their feedback mechanisms.more » « less
An official website of the United States government

Full Text Available